fcs
class
WSP
A class to parse a FlowJo WSP file following the Gating-ML 2.0 standard. Contains methods
for extracting gates, table output structure, population statistics, and compensation
matrices from WSP file.
wsp = WSP(wsp_bytes)
View gates
wsp.gates
View population statistics computed in FlowJo
wsp.stats_flowjo
View table output structure, as configured in Table Editor in FlowJo
wsp.table_output_structure
Generate output table based on table output structure and FlowJo population statistics
WSP.apply_table_output_structure(
wsp.table_output_structure["Table"][["gate", "value_type", "statistic", "rename"]], wsp.stats_flowjo
)
With corresponding FCS files, you can calculate population counts from FCS events data using
the apply_compensation and calculate_population_counts methods.
function
WSP.init
Setup parsed WSP object, which contains gates, population statistics, and
table output structure as configured in Table Editor in FlowJo
Parameters
wsp_bytes : bytes or file_like object
FlowJo Workspace file in bytes
function
WSP.get_population_stats
Retrieve population statistics from WSP file
Returns
pd.DataFrame
Population statistics as a DataFrame
function
WSP.get_gates
Retrieve gates from WSP file
Returns
pd.DataFrame
Gates as a DataFrame
function
WSP.get_single_well_stats
Retrieve populations for a given well from a WSP file. To use this method, loop through the
wells in the WSP file and pass the node corresponding to the well to this method, making
sure to capture the unique identifier for each well in the loop.
Parameters
node : node
Node to start looking in, typically node corresponding to well
method : str
Method to use to retrieve population counts.
'gates' will retrieve gates from WSP file
'flowjo_stats' will parse stats from WSP file
Returns
Dict
Dictionary containing single well stats requested
function
WSP.get_table_output_structure
Retrieve table structure as specified in Table Editor of FlowJo
Parameters
node : etree.Element
Node to search for table editor, typically root node
Returns
pd.DataFrame
DataFrame consisting of gate and tables
function
WSP.apply_table_output_structure
Apply table structure as specified in Table Editor of FlowJo to get population proportions
Parameters
df_table_structure : pd.DataFrame
DataFrame containing table structure; Should contain the following fields:
gate (series of gates applied to determine population)
value_type (type of value (e.g. statistic, keyword, etc.))
rename (name of column in output table)
table_name (name of table)
df_population_stats : pd.DataFrame
DataFrame containing gating stats; Should contain the following fields
population (series of gates applied to determine population)
statistic_name (name of statistic (e.g. count, MFI, etc.))
statistic_value (value of statistic)
unique_id : Union[List[str], str]
Unique identifying column names(s) for single flow run. Commonly, this would be well position,
well position + timestamp, or filename.
Returns
pd.DataFrame
DataFrame containing population proportions with the following fields
table_name (name of table)
unique_id (unique identifier for well; name will vary depending on chosen identifier)
population (population name (e.g. - CD3, Cells, etc.))
statistic_name (type of statistic (e.g. freqof, freqofparent, freqofgrandparent, etc.))
statistic_value (value of statistic)
Examples
>>> wsp = WSP(wsp_bytes)
>>> WSP.apply_table_output_structure(wsp.table_output_structure,
wsp.stats_flowjo,
unique_id="filename")
function
WSP.get_gating_order
Convenience method to get the order in which gating was conducted from the list of gates
observed in file
Parameters
population_name : List[str]
List of populations, delimited by '/'
Returns
List[str]
List of populations in order
Example
>>> get_gating_order(["All Events",
"All Events/Single Cells/Live Cells",
"All Events/Single Cells"])
["All Events", "All Events/Single Cells", "All Events/Single Cells/Live Cells"]
function
WSP.get_gate_structure
Retrieve gate structure as a nested dict from a WSP file
Parameters
node : etree.Element
XML node to start traversal in, typically node corresponding to well
function
WSP.get_compensation_matrices
Retrieve compensation matrices from WSP file as a DataFrame
Returns
Dict[str, pd.DataFrame]
Dictionary of compensation matrices, keyed by matrix name
function
WSP.apply_compensation
Adjust flow cytometry data for compensation
Parameters
data : pd.DataFrame
DataFrame containing FCS event data
compensation_matrix : pd.DataFrame
DataFrame containing compensation matrix; rows are from, columns are to
compensation_channels : List[str]
Fluorescent channels to adjust for compensation
Returns
pd.DataFrame
DataFrame containing compensated events
function
WSP.calculate_population_counts
Calculate population counts from FCS events data, using compensation matrix
Parameters
wsp_gates : pd.DataFrame
Pandas DataFrame with the following fields
population_name (full nesting of population)
gate_sort_order (order of points for polygon)
rect_min (min cutoff for rectangle gate)
rect_max (max cutoff for rectangle gate)
x (x coordinate for polygon gate)
y (y coordinate for polygon gate),
x_dimension (X dimension for laser)
y_dimension (Y dimension for laser)
gate_type
filename corresponding to well
compensation_matrix : pd.DataFrame
Compensation matrix as a DataFrame; rows are from labels, columns are to labels
fcs_files_dict : Dict[str, bytes]
Dictionary of FCS files as bytes, keyed by filename
Returns
pd.DataFrame
DataFrame containing filename, population name, and counts
class
FCS
A class to represent an FCS (Flow Cytometry Standard) file.
Attributes
data : pd.DataFrame
The data contained in the FCS file.
metadata_file : pd.DataFrame
The metadata contained in the FCS file header.
metadata_fcs : pd.DataFrame
The system metadata contained in the FCS file.
metadata_channels : pd.DataFrame
The characteristics for each channel in the FCS file.
metadata_channel_names : Tuple
The names of the flow cytometer channels.
Methods
parse_metadata(metadata: dict)
Parses FCS file metadata.
function
FCS.parse_metadata
Parses FCS file metadata
Parameters
metadata : dict
Metadata contained within FCS file, as parsed by the fcsparser python package
Returns
dict
FCS metadata
Notes
FCS metadata is returned as a dictionary with the following components
header: dict
describes FCS version and byte offsets of TEXT, DATA, and ANALYSIS segments in FCS file
system_metadata: dict
contains system metadata as specified by the FCS file format
channels: pd.DataFrame
describes characteristics for each channel
channel_names: Tuple
contains flow cytometer channel names
function
FCS.gate_population_polygon
Gate FCS file using a polygon
Parameters
data : pd.DataFrame
DataFrame containing FCS event data
polygon : np.ndarray
2D Numpy array containing polygon vertices
x_dimension : str
Name of x dimension
y_dimension : str
Name of y dimension
Returns
pd.DataFrame
DataFrame containing gated population events
function
FCS.gate_population_limit
Gate FCS file using a limit
Parameters
data : pd.DataFrame
DataFrame containing FCS event data
dim : str
Name of dimension to gate on
min_val : float
Minimum value to gate on
max_val : float
Maximum value to gate on
Returns
pd.DataFrame
DataFrame containing gated population events
function
FCS.create_comp_matrix_xml
Creates XML representation of compensation matrix
Parameters
df : pd.DataFrame
Pandas DataFrame containing compensation matrix. Rows are from, columns are to
comp_matrix_name : str
Name of compensation matrix
spillover_mat_attr : dict[str, str], optional
spillover matrix definition, by default None
Raises
GanymedeException
If rows and columns are not in the same order
Example
For a WSP object, insert a compensation matrix into the XML tree by executing the steps shown below:
>>>> xml_comp_mat = WSP.create_comp_matrix_xml(df_comp_matrix)
>>>> matrix = xml_comp_mat.xpath("./transforms:spilloverMatrix", namespaces=WSP.ns_transforms).pop()
>>>> wsp_obj.wsp_root.xpath("./Matrices")[0].append(xml_comp_mat)
In this example, df_comp_matrix is a Pandas DataFrame with a format mirroring an element
from an item in the 'compensation_matrices' dictionary returned by the 'get_compensation_matrices' method.
Writing wsp_obj to a file will now include the added compensation matrix in the WSP file, which
can be opened in FlowJo.
function
parse_fcs
Parse an FCS file and return a dict of metadata and numpy arrays of the data.
Parameters
fcs_bytes : bytes
Contents of an FCS file
Returns
FCS
An FCS object containing the data and metadata from the FCS file